
Summary 
This document is designed specifically for first-time users of LM Studio. It
provides a comprehensive guide, outlining each step necessary to set up a
functional working environment. The document refers to this setup as "Blueprint"
and ensures users can easily follow the instructions. It aims to simplify the
process, making it accessible for beginners.

Blueprint: Private AI
Stack with LM Studio for

Testing

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.

LM Studio Setup 
I. Prerequisites: 

Windows 10 or 11 (64-bit) 
Python 3.7 or later (Download from https://www.python.org/downloads/) 
NVIDIA or AMD GPU recommended (for faster training) 

II. Installation: 
Download LM Studio: https://huggingface.co/lmstudio-ai (Choose the
appropriate Windows installer) 
Double-click the installer and follow the on-screen instructions. 

 III. Verification: 
Open an LM Studio. 
If successful, it should display the LM Studio version information. 

https://www.python.org/downloads/
https://huggingface.co/lmstudio-ai


Model Selection 
LM Studio supports various Large Language Models (LLMs). Here's a suggestion
for your tech support chatbot: 
 Model:  TheBloke Mistral Instruct 7B, Lava graphic, Lamma3

Download Model 
Open the LM Studio application. 
Click on "Models" on the left menu. 
Search for " TheBloke Mistral Instruct v0 1 7B" 
Click "Download Model." 

Steps to test your prompts
Go to the local server option in the left menu, click on Start the server, and
select the Mistral 7B V01 model.
Go to Chat and Enter the prompt to test. eg: what is the color of the sun

You now have a functional LLM on LM Studio, go ahead and play around with it.
Listed below are some more Models you can play around with.

Open source models you can experiment with 

Mistral 
Model Size: 7 billion parameters 
Developed by: Anthropic 
Key Features: Excels at open-ended generation tasks like writing stories, code
generation, and question answering. Trained on a diverse corpus of web
data. 1 Strengths: Strong performance on benchmarks like MMLU, good at
multi-task learning. 
Weaknesses: Smaller model size compared to others, may struggle with
more complex tasks. 

Mixtral 
Model Size: 12 billion parameters 
Developed by: Anthropic 
Key Features: Combines the capabilities of Mistral with multimodal
understanding, allowing it to process and generate images, text, and other
data types. 1 
Strengths: Multimodal capabilities, good at tasks involving visual and textual
data. 
Weaknesses: Larger model size requires more computational resources. 

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.

https://www.sabrepc.com/blog/Deep-Learning-and-AI/top-10-hugging-face-models-for-tensorflow
https://www.sabrepc.com/blog/Deep-Learning-and-AI/top-10-hugging-face-models-for-tensorflow


Best
Services

Digital Marketing

Branding Design

Development

Branding Design

Llama 3 
Model Size: 60 billion parameters 
Developed by: Meta AI 
Key Features: Trained on a large and diverse corpus, excels at open-ended
generation, question answering, and analysis tasks. 2 
Strengths: Large model size, strong performance on benchmarks like MMLU
and ScienceQA. 

Bloom 
Model Size: 176 billion parameters 
Developed by: Hugging Face and BigScience 
Key Features: Largest open multilingual language model, trained on data
from 46 languages. 3 
Strengths: Excels at multilingual tasks, strong performance on benchmarks
like XGLUE. 
Weaknesses: Massive model size requires substantial computational
resources. 

GPT-NeoX-20B 
Model Size: 20 billion parameters 
Developed by: EleutherAI 
Key Features: Trained on a filtered subset of web data, focused on improving
safety and truthfulness. 4 
Strengths: Good balance of performance and resource requirements,
emphasis on safety. 
Weaknesses: Smaller model size may limit capabilities compared to larger
models. 4 

MS Phi3 
Model Size: 3 billion parameters 
Developed by: Microsoft 
Key Features: Trained on a curated dataset focused on truthfulness and
safety. Designed for open-domain question answering and dialogue. 5 
Strengths: Emphasis on safety and truthfulness, good for open-ended QA. 
Weaknesses: Relatively small model size limits capabilities. 

GROK 
Model Size: 280 billion parameters 
Developed by: DeepMind 
Key Features: One of the largest open-source language models. Trained on a
filtered dataset to improve truthfulness. 5

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.

https://huggingface.co/
https://neptune.ai/blog/hugging-face-pre-trained-models-find-the-best
https://huggingface.co/models
https://huggingface.co/models
https://www.datacamp.com/blog/top-open-source-llms
https://www.datacamp.com/blog/top-open-source-llms


Best
Services

Digital Marketing

Branding Design

Development

Branding Design

Strengths: Massive scale enables strong performance on many NLP tasks. 
Weaknesses: Requires immense computational resources, may still exhibit
biases. 

Claude 
Model Size: 100 billion parameters 
Developed by: Anthropic 
Key Features: Trained using constitutional AI principles to be safe and
truthful. Excels at analysis, coding, and open-ended tasks. 5 
Strengths: Strong analytical capabilities, emphasis on safety and
truthfulness. 
Weaknesses: Large model size is computationally intensive. 

GEMMA 
Model Size: 339 billion parameters 
Developed by: Google 
Key Features: One of the largest open multimodal models, can process
images, text, and other data. 5 
Strengths: Multimodal capabilities, massive scale enables high performance. 
Weaknesses: Extremely computationally expensive, may have biases from
training data. 

This covers a wide range of powerful open-source language models with
different capabilities, strengths, and resource requirements to consider for
various use cases. 12345 

Sources: 

Top 10 Hugging Face Models for TensorFlow - SabrePC 
Hugging Face – The AI community building the future. 
Hugging Face Pre-trained Models: Find the Best One for Your Task 
Models - Hugging Face 
8 Top Open-Source LLMs for 2024 and Their Uses - DataCamp 

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.

https://www.datacamp.com/blog/top-open-source-llms
https://www.datacamp.com/blog/top-open-source-llms
https://www.sabrepc.com/blog/Deep-Learning-and-AI/top-10-hugging-face-models-for-tensorflow
https://huggingface.co/
https://neptune.ai/blog/hugging-face-pre-trained-models-find-the-best
https://huggingface.co/models
https://www.datacamp.com/blog/top-open-source-llms
https://www.sabrepc.com/blog/Deep-Learning-and-AI/top-10-hugging-face-models-for-tensorflow
https://huggingface.co/
https://neptune.ai/blog/hugging-face-pre-trained-models-find-the-best
https://huggingface.co/models
https://www.datacamp.com/blog/top-open-source-llms


If you are planning to setup custom scrips to interact
with the LLM here are the instructions for setting up an
LLM RAG Chatbot with Lang Chain using VS Code
 
Step1: 
i. Create a New Python Project: 

#mkdir langchain_chatbot 
#cd langchain_chatbot 
 
ii. Set Up a Virtual Environment: 

#python -m venv venv 
#.\venv\Scripts\activate   
 
iii. Install Required Libraries 

#python -m pip install langchain==0.1.0 openai==1.7.2 langchain-openai==0.0.2
langchain-community==0.0.12 langchainhub==0.1.14 python-dotenv 

iv. Create the necessary directories and files in VS Code: 
 
 data/ 

 reviews.csv 
langchain_intro/ 

Chatbot.py 
create_retriever.py 
tools.py .env 

.env 

Step2: 

i. Add OpenAI below API Key to .env File: 

LMSTUDIO_API_KEY=not-needed 

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.



Best
Services

Digital Marketing

Branding Design

Development

Branding Design

ii.Open chatbot.py in VS Code. Add the below code: 

import dotenv 
import os 
import requests 
 
# Load environment variables from .env file 
dotenv.load_dotenv() 
 
# Set the base URL for the local LM Studio server 
api_base_url = "http://localhost:1234/v1" 
api_key = os.getenv("LMSTUDIO_API_KEY") 
 
# Function to get chat response from the local LM Studio server 
def get_chat_response(question): 
url = f"{api_base_url}/chat/completions" 
 headers = { 
 "Authorization": f"Bearer {api_key}", 
 "Content-Type": "application/json" 
 } 
 payload = { 
 "messages": [ 
 {"role": "system", "content": "You are an assistant knowledgeable about general
information. Provide concise and accurate answers."}, 
 {"role": "user", "content": question} 
 ], 
 "temperature": 0.7, 
 "max_tokens": 150 
 } 
 response = requests.post(url, headers=headers, json=payload) 
 try: 
response_data = response.json() 
 if "choices" in response_data: 
 return response_data["choices"][0]["message"]["content"].strip() 
 else: 
print("Response did not contain 'choices':", response_data) 
 return "Error: The response from the server did not contain the expected format."
except ValueError: 
 return "Error: Unable to parse response from server." 

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.



Best
Services

Digital Marketing

Branding Design

Development

Branding Design

# Main function to prompt user for input and display chatbot response 
if __name__ == "__main__": 
 while True: 
 question = input("Enter your query (or type 'exit' to quit): ") 
 if question.lower() == 'exit': 
 print("Goodbye!") 
 break 
 response = get_chat_response(question) 
print("Chatbot response:", response) 

iii. Open create_retriever.py in VS Code Add the code: 
import dotenv 
import os 
import requests 
from langchain_community.vectorstores import Chroma 
from langchain_openai import OpenAIEmbeddings 
 
# Load environment variables from .env file 
dotenv.load_dotenv() 

# Set the base URL for the local LM Studio server 
api_base_url = "http://localhost:1234/v1" 
api_key = os.getenv("LMSTUDIO_API_KEY") 
 
# Set up ChromaDB 
REVIEWS_CHROMA_PATH = "chroma_data/" 
reviews_vector_db = Chroma(persist_directory=REVIEWS_CHROMA_PATH,
embedding_function=OpenAIEmbeddings()) 
# Function to get chat response from the local LM Studio server 
def get_chat_response(question): 
relevant_docs = reviews_vector_db.similarity_search(question, k=3) 
 context = "\n".join([doc.page_content for doc in relevant_docs]) 
full_prompt = f"Context: {context}\n\nQuestion: {question}" 
 
url = f"{api_base_url}/chat/completions" 
 headers = { 
 "Authorization": f"Bearer {api_key}", 
 "Content-Type": "application/json" 
 } 

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.



Best
Services

Digital Marketing

Branding Design

Development

Branding Design

payload = { 
 "messages": [ 
 {"role": "system", "content": "You are an assistant knowledgeable about
healthcare. Only answer healthcare-related questions."}, 
 {"role": "user", "content": question}, 
 {"role": "system", "content": f"Context: {context}"} 
 ], 
 "temperature": 0.7, 
 "max_tokens": 150 
 } 
 response = requests.post(url, headers=headers, json=payload) 
 if response.status_code == 200: 
 return response.json()["choices"][0]["message"]["content"].strip() 
 else: 
 return f"Error: {response.status_code}, {response.text}" 
 
# Test the chatbot 
if __name__ == "__main__": 
 question = "Has anyone complained about communication with the hospital
staff?" 
 print(get_chat_response(question)) 

iv. To Test the chatbot Run the Below Command: 

#python langchain_intro/chatbot.py 

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.

8



Best
Services

Digital Marketing

Branding Design

Development

Branding Design

(Topics coming soon)

AI Personality for Tech Support  

Training Data: 
Collect transcripts from past tech support interactions (chat logs, emails)1.
Include relevant technical documentation and FAQs. 2.
Define your desired chatbot personality (e.g., friendly, informative,
professional). 

3.

Determine the Chatbot’s Target Purpose & Capabilities: 
Understand the purpose of your chatbot. Will it provide medical
recommendations, answer health-related questions, or assist with
appointment scheduling? 

1.

Define the chatbot’s capabilities, such as diagnosing diseases, suggesting
treatments, or providing general health information. 

2.

Collect Relevant Data: 
Question-Answer Datasets: 1.

        i. Gather datasets containing medical questions and their corresponding                              
answers. Look for open-source datasets related to health care. 
       ii. Examples include: 

AmbigQA: A question-answering dataset with disambiguated questions1. 
CommonsenseQA: A multiple-choice dataset that requires common sense
knowledge1. 
Cornell Movie-Dialogs Corpus: Conversations from movies1. 
The Ubuntu Dialogue Corpus: Multi-turn dialogues1. 
Consider using customer support logs, social media dialogues, and other
relevant sources2. 

Categorize and Annotate the Data: 

Organize the collected data into categories based on medical topics (e.g.,
symptoms, treatments, medications). 

1.

Annotate the data with relevant labels (e.g., intent labels, disease names). 2.

Balance the Data: 
Ensure a balanced representation of different medical conditions and
scenarios. 

1.

Avoid bias by including diverse examples.2.
This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.

https://smartone.ai/blog/best-machine-learning-datasets-for-chatbot-training/
https://smartone.ai/blog/best-machine-learning-datasets-for-chatbot-training/
https://smartone.ai/blog/best-machine-learning-datasets-for-chatbot-training/
https://smartone.ai/blog/best-machine-learning-datasets-for-chatbot-training/
https://smartone.ai/blog/best-machine-learning-datasets-for-chatbot-training/
https://www.metadialog.com/blog/chatbot-datasets-in-ml/
https://www.metadialog.com/blog/chatbot-datasets-in-ml/


Best
Services

Digital Marketing

Branding Design

Development

Branding Design

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.

Choose the Right Architecture: 
Decide on the AI model architecture. Common choices include: 1.

       i. Machine Learning (ML): Use ML algorithms (e.g., logistic regression, decision   
trees) for simpler tasks. 
     ii. Deep Learning: Consider neural networks (e.g., recurrent neural networks,
transformers) for more complex tasks. 

Develop a Robust NLP Model: 
Implement Natural Language Processing (NLP) techniques. 1.
Train the model to understand medical terminology, context, and user
queries. 

2.

Continual Learning: 
Regularly update the model with new data to keep it up-to-date. 1.
Monitor user interactions and refine the chatbot’s responses. 2.

Test the Dataset and Model:
Evaluate the dataset by testing the chatbot’s responses. 1.
Use metrics (e.g., accuracy, F1 score) to assess performance. 2.

Persona Development: 

Define your desired chatbot personality (e.g., friendly, informative, professional).
Craft responses that embody that personality (use positive reinforcement,
acknowledge user frustration)
 
Desired Personality Traits:
     a. Friendly: Make the chatbot approachable and warm. 
     b. Informative: Provide accurate and helpful information. 
     c. Professional: Maintain a respectful and knowledgeable tone.

Crafting Responses: 
    a. Positive Reinforcement: 
       i. Use encouraging language to motivate users: 

“Great job seeking medical advice!” 
“You’re taking the right steps by asking questions.” 
“I appreciate your proactive approach.” 



Best
Services

Acknowledging Frustration: 
         a. When users express frustration or concern, empathize and offer support: 
           i. “I understand this can be overwhelming. Let’s explore your options.” 
          ii. “Thank you for your patience. Let’s find a solution together.” 
         iii. “I’m here to assist you through this process.” 

Integration: 
LM Studio offers various functionalities for integrating your chatbot into your
existing platform (API, web interface). Refer to the documentation for specific
instructions. 
      API Integration:
           i. What is it? An API (Application Programming Interface) allows your   
chatbot to communicate with other software applications. 
          ii. How to Use It: 

Endpoint: LM Studio provides an API endpoint where you can send user
queries. 
Request Format: Typically, you’ll send a POST request with the user’s
message. 
Response Format: The API will return the chatbot’s response. 

        iii. Advantages: 
Real-time interaction. 
Seamless integration with your application. 

    Web Interface Integration: 
         i. What is it? You can embed the chatbot directly into your web application. 
        ii. How to Use It: 

Embed Code: LM Studio provides code snippets that you can include
in your HTML. 
Customization: Customize the chatbot’s appearance (colors, fonts,
etc.). 
Event Handling: Handle user interactions (e.g., button clicks) via
JavaScript. 

      iii. Advantages: 
User-friendly interface. 
No need for users to leave your website. 

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.

11



Best
Services

    Documentation: 
      i. Refer to the official LM Studio documentation for detailed instructions on
both API and web interface integration. 
     ii. Follow the step-by-step guides to set up your chatbot.

Optimization Techniques 
Prompt Engineering: Craft clear and concise prompts that guide the model
towards generating relevant and informative responses. 
Temperature: Adjust the temperature parameter to control the creativity and
randomness of the model's responses. A lower temperature leads to more
conservative and factual responses. 
Top-k Sampling: This technique limits the model's output to the top k most
likely tokens, improving response coherence. 

    Prompt Engineering: 
    i. What is it? Prompt engineering involves crafting effective prompts to guide
pre-trained models. It’s about designing clear and concise input prompts that
lead the model toward relevant and informative responses. 
   ii. Why is it important? Well-crafted prompts can significantly influence the
quality of generated output. They set the context and steer the model’s
attention. 
  iii. Tips for Effective Prompt Engineering: 

Be specific: Clearly state the desired task or question. 
Include relevant keywords: Use terms related to the topic you want the
model to address. 
Avoid ambiguity: Make sure the prompt leaves no room for
misinterpretation.

    Temperature: 

     i. What is it? The temperature parameter controls the creativity and
randomness of the model’s responses during generation. 
    ii. How it works: 

High temperature (e.g., 1.0): Leads to more diverse and creative
outputs. The model explores different possibilities. 
Low temperature (e.g., 0.2): Results in more conservative and factual
responses. The model sticks to what it knows. 

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.

12



   iii. Choosing the right temperature: 
For informative and precise answers, use a lower temperature. 
For creative or exploratory responses, opt for a higher temperature. 

   Top-k Sampling: 
    i. What is it? This technique limits the model’s output to the top k most likely
tokens at each generation step. 
  ii. How it works: 

The model ranks all possible tokens based on their probabilities. 
It selects the top k tokens (where k is a predefined value) and samples
from them. 

    Advantages: 
     i. Improves response coherence by avoiding unlikely or noisy tokens. 
   ii. Helps prevent the model from generating gibberish.

Additional Info: 
Robust Error Handling: 1.
Implement robust error-handling mechanisms to gracefully manage
unexpected inputs or errors encountered during interactions. 
Provide informative error messages to users and log error details for
troubleshooting purposes. 

    2. Compliance and Regulation: 
Ensure compliance with relevant regulations and standards governing the
handling of medical information and personal data (e.g., GDPR, HIPAA). 
Implement measures to protect user privacy and secure sensitive
information transmitted during interactions. 

info@vaultsec.co
﻿+1-315-898-1160

This document contains proprietary information and is copyrighted by Vault Security Solutions © 2024. All rights reserved.

vaultsec.co

13


